Modeling of substrates sorption into acetylcholinesterase and butyrylcholinesterase active sites using molecular docking method

نویسندگان

  • Daria Belinskaya
  • Natalia Shestakova
  • Juffer André
چکیده

Cholinesterases (ChE) acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are capable for hydrolyzing esters. Our previous structure-activity analysis of ChE substrates showed that extended conformation of substrate choline moiety is productive for hydrolysis by AChE and its semi-folded conformation is productive for hydrolysis by BChE. The formation of activated complex between ChE and substrate molecules is possible only when the substrate molecule is in the productive conformation [1]. The purpose of the present work was to model sorption stage of ChE hydrolysis and to determine the substrate orientation of a substrate in the binding site of AChE and BChE using molecular docking and computer simulation methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of ACh...

متن کامل

Synthesis of bistetrahydroquinolines as potential anticholinesterasic agents by double Diels-Alder reactions.

The tetrahydroquinoline ring system is a unit found in many biologically active natural products and pharmacologically relevant therapeutic agents. A new series of bistetrahydroquinolines (bis-THQs) was synthesized using imino Diels-Alder reactions between dialdehydes, anilines and N-vinyl-2-pyrrolidone (NVP). The notable features of this procedure are mild reaction conditions, greater selectiv...

متن کامل

Selective in-vitro Enzymes’ Inhibitory Activities of Fingerprints Compounds of Salvia Species and Molecular Docking Simulations

Recently Nutrition and Food Chemistry researches have been focused on plants and their products or their secondary metabolites having anti-alzheimer, anti-cancer, anti-aging, and antioxidant properties. Among these plants Salvia L. (Lamiaceae) species come into prominence with their booster effects due to high antioxidant contents, which have over 900 species in the world and 98 in Turkey. Some...

متن کامل

Selective in-vitro Enzymes’ Inhibitory Activities of Fingerprints Compounds of Salvia Species and Molecular Docking Simulations

Recently Nutrition and Food Chemistry researches have been focused on plants and their products or their secondary metabolites having anti-alzheimer, anti-cancer, anti-aging, and antioxidant properties. Among these plants Salvia L. (Lamiaceae) species come into prominence with their booster effects due to high antioxidant contents, which have over 900 species in the world and 98 in Turkey. Some...

متن کامل

QSAR, Docking and Molecular Dynamics Studies on the Piperidone-grafted Mono- and Bis-spiro-oxindole-hexahydropyrrolizines as Potent Butyrylcholinesterase Inhibitors

ABSTRACT: Quantitative structure-activity relationship (QSAR) study on the piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent butyrylcholinestrase (BuChE) inhibitors were carried out using statistical methods, molecular dynamics and molecular docking simulation. QSAR methodologies, including classification and regression tree (CART), multiple linear regression (MLR),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008